Marketing Optimization

Marketing Optimization

The proliferation in the number of channels by which customers communicate has resulted in marketers drowning in data and struggling to better understand their customers. Marketers have to continually deliver above-market growth and show measurable results. MapR marketing optimization solutions enable marketers to cost-effectively integrate and analyze disparate data to gain richer customer insights, develop personalized real-time customer relationships, and increase revenue.

Architecture for Marketing Optimization

Specific uses cases include:

  • Data Reservoir or “Data Lake”: Collecting raw data which was previously too expensive to store and process. Data is managed and governed here and can also act as an online archive for data infrequently accessed.
  • Data Refining: Optimize the process of integrating diverse data types from multiple sources to discover relationships. Parse, cleanse, transform, and integrate data.
  • Big Data Exploration: Perform investigative analytics on large data volumes of unknown value. Apply a combination of SQL-on-Hadoop, machine learnings, statistics, and graph analysis techniques to unlock new insights and improve operational analytics such as anomaly detection and recommendations.
  • Data Warehouse Optimization: Capture, store, and refine incoming big data in an enterprise data hub (EDH) to free up valuable processing and storage space on the data warehouse for mission-critical reporting and analysis. Create online archive of infrequently queried data.
  • Mainframe Optimization: Offload data and batch processing to Hadoop to free up expensive MIPS cycles and modernize the enterprise data architecture.

The MapR Converged Data Platform

Deploying a marketing optimization solution with MapR leverages the high-performance, massively scalable, and reliable MapR Converged Data Platform to give organizations a powerful, enterprise-grade, distributed computing platform. Some of the important features of the MapR include:

  • Easy data access: Copying data to and from MapR is as simple as copying data to a standard file system using Direct Access NFS™. Read Tech Brief
  • Multi-tenancy: Support multiple user groups, any and all enterprise data sets, and multiple applications in the same cluster. Read Tech Brief
  • Business continuity: MapR provides integrated high availability (HA), data protection, and disaster recovery (DR) capabilities to protect against both hardware failure as well as site-wide failure.
  • Data storage in native formats: MapR supports all data types without requiring predefined schemas so that all data sources from across the enterprise can be included for a 360-degree view of your business.
  • High performance: MapR was designed for high performance, with respect to both high throughput and low latency. In addition, a fraction of servers are required for running MapR versus other big data platforms, leading to architectural simplicity and lower capital and operational expenses.

Learn more about the Data Warehouse Quick Start Solution.Learn More

Overview of an Enterprise Data Hub that illustrates how customers are using MapR for this solution. Watch
EMA: Foundations for Data-Driven Enterprises: The Rapidly Evolving Hadoop-based Enterprise Data Hub
Set the Bar High for Enterprise Data Hub Requirements
Enterprise Data Hub: Optimizing Your Data Architecture with Hadoop
HP leverages the power of MapR in its Big Data infrastructure
Read comScore uses Hadoop to process over 1.7 trillion internet and mobile records per month
Read How Cisco IT built big data platform to transform data management